Cyclic representations of general linear p-adic groups

نویسندگان

چکیده

Let π1,…,πk be smooth irreducible representations of p-adic general linear groups. We prove that the parabolic induction product π1×⋯×πk has a unique quotient whose Langlands parameter is sum parameters all factors (cyclicity property), assuming same property holds for each products πi×πj (i<j), and but at most two πi×πi remains (square-irreducibility property). Our technique applies recently devised Kashiwara-Kim notion normal sequence modules quiver Hecke algebras. Thus, cyclicity problem reduced to recent Lapid-Mínguez conjectures on maximal case.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JACQUET MODULES OF p-ADIC GENERAL LINEAR GROUPS

In this paper, we study Jacquet modules for p-adic general linear groups. More precisely, we have results—formulas and algorithms—aimed at addressing the following question: Given the Langlands data for an irreducible representation, can we determine its (semisimplified) Jacquet module? We use our results to answer this question in a number of cases, as well as to recover some familiar results ...

متن کامل

Distinction and Asai L-functions for generic representations of general linear groups over p-adic fields

Let K/F be a quadratic extension of p-adic fields, and n a positive integer. A smooth irreducible representation of the group GL(n, K) is said to be distinguished, if it admits on its space a nonzero GL(n, F )-invariant linear form. In the present work, we classify distinguished generic representations of the group GL(n, K) in terms of inducing quasi-square-integrable representations. This has ...

متن کامل

EXTENSIONS OF REPRESENTATIONS OF p-ADIC GROUPS

We calculate extensions between certain irreducible admissible representations of p-adic groups. To Hiroshi Saito, in memoriam

متن کامل

SMOOTH REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS

Smooth representations of p-adic groups arise in number theory mainly through the study of automorphic representations, and thus in the end, for example, from modular forms. We saw in the first lecture by Matt Emerton that a modular form, thought of as function on the set of lattices with level N structure, we obtain a function in C(GL2(Z)\GL2(R) × GL2(Z/N),C) satisfying certain differential eq...

متن کامل

REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS

Preface 1 1. Classical groups 4 2. Parabolic induction 10 3. Admissible representations 16 4. Jacquet modules and cuspidal representations 24 5. Composition series of induced representations of SL(2, F ) and GL(2, F ) 34 6. Some examples 39 7. Parabolically induced representations of SL(2, F ) and GL(2, F ) 45 8. Some general consequences 52 9. GL(n, F ) 55 10. GSp(n, F ) 62 11. On the reducibi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2021

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2021.05.013